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Proof. The distance BF is equal to a by (3.5). The lengths r/e, p/e and a/e
are determined by our first definition of the ellipse (see Fig. 3.4). Then we see
in Fig. 5.26 the relations r cosϕ+ r

e = p
e and a cosu+ r

e = a
e . These equations,

when solved for r, lead to the formulas (5.48).
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Fig. 5.27. Computation of the area A swept out by the radius vector

Formula for the area. The area A swept out by the line joining F and P
(see Fig. 5.27, left) plays an important role in astronomy, as we will soon see.
We stretch the ellipse into a circle (see Fig. 5.27, right) to get B = a

b
A. Since

B is the difference of a circular sector (of area a2

2 · u) and a triangle (whose
area T we get from Eucl. I.41 and from the fact that OF is equal to ae),10 we
obtain

B =
a2

2
(u− e sinu) and A =

ab

2
(u− e sinu) . (5.49)

5.10 The Great Discoveries of Kepler and Newton

“Astronomy is older than physics. In fact, it got physics started
by showing the beautiful simplicity of the motion of the stars and
planets, the understanding of which was the beginning of physics.”

(R.Feynman, 1964, Chap. 3.4)

“ ... i libri di Apollonio, ... delle quali sole siamo bisogni nel pre-
sente trattato. [The books of Apollonius, the only ones which we
require in the present treatise.]”

(Galilei 1638, giornata quarta)

Three great works marked the emergence of modern science (see the first quo-
tation): Kepler’s Astronomia Nova (1609), Galilei’s Discorsi (1638) and New-
ton’s Principia (1687). The discoveries of all three works were based mainly
on tools from elementary geometry (Thales, Euclid and Apollonius, see the
second quotation), however in a highly ingenious way. So they fit well into our
book, but don’t expect easy bedtime reading here.

10This can be seen either from a2− b2 = a2e2 (see (3.8)) and Pythagoras, or from
the second formula in (5.48) with u = 0.
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Kepler’s laws.
“... itaque futilum fuisse meum de Marte triumphum; forte fortuito
incido in secantem anguli 5◦.18′. quæ est mensura æquationis Op-
ticæ maximæ. Quem cum viderem esse 100429, hic quasi e somno
expergefactus, & novam lucem intuitus ... [When my triumph over
Mars appeared to be futile, I fell by chance on the observation that
the secant of the angle 5◦18′ is 1.00429, which was the error of the
measure of the maximal point. I awoke as if from sleep, & a new
light broke on me.]” (J.Kepler 1609, Cap. LVI, p. 267)

Before Kepler, the knowledge in astronomy was, after thousands of years of
measurements and calculations (by the Babylonian priests, Greek philoso-
phers, Ptolemy, Copernicus’ De revolutionibus and Tycho Brahe) as follows:
The planets move around the Sun on eccentric circles, i.e. the Sun is not pre-
cisely at the centre of these circles. This model was quite compatible with the
innumerable measurements made with unequalled precision by Tycho Brahe
for all the planets known at that time, with the exception of the planet Mars.

After years of “pertinaci studio elaborata Pragæ”, Kepler finally discovered
the following laws (the first two in Kepler 1609, the last one in Kepler 1619):

Kepler 1. Planets move on elliptic orbits with the Sun at one of the foci.

Kepler 2. The planets orbiting the Sun sweep out equal areas in equal time.

Kepler 3. The squares of the periods of revolution are proportional to the
cubes of the semi-major axes.
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Fig. 5.28. The discovery of Kepler’s first law (Astronomia Nova, Chap. 56); Kepler’s
drawing (left), modern drawing (right).

Kepler’s calculations and meditations, which led to the discovery of his laws,
fill hundreds of pages in his Astronomia Nova (1609). The decisive break-
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through occurs in Chap. 56 11 and is explained in Fig. 5.28: The best possible
circle for the orbit of Mars, which we take of radius 1, would have an eccen-
tricity e = OS such that the angle SBO is 5◦18′, where B is the point with
the greatest distance from the axis SOC. But the true distance BS for Mars
measured by Brahe was smaller by a factor 1/1.00429 than the distance BS
for the point on that circle. Luckily, Kepler remarked that this value is pre-
cisely cos 5◦18′ and “a new light broke on him” (see the quotation): we should
move the point B to the point B′, whose distance B′S is the same as that of
BO; in other words, we have to replace the hypotenuse (which is BS) by the
leg (BO). Kepler tried the same recipe at other points: move the point P to
the position P ′, such that the length P ′S is equal to that of the leg PR. This
becomes

P ′S = PR = 1 + e cosu , (5.50)

because the angle u, called the eccentric anomaly, reappears as angle SOR,
so that OR = e cosu. These distances (5.50), which “are confirmed by very
numerous and very sure measurements” (end of Chap. 56), are precisely those
of the second formula of (5.48) and thus the points describe an ellipse.

Newton’s proof of Kepler 2. Once Kepler’s laws were discovered, one
wanted to understand them in the light of the foundations of mechanics,
which Galilei (1638, Giornata terza) had laid down and which Newton had
turned into the following two crystal clear laws:

Lex 1. Without force a body remains in uniform motion on a straight line.

Lex 2. The change of motion is proportional to the motive force impressed.
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Fig. 5.29. Newton’s proof for Kepler 2; reproduction from Newton’s Principia (left);
the triangles ABS, BcS and BCS having the same area (right)

11For more details on the first parts of the book, which culminate in the discovery
of Kepler 2 (Chap. 40), we refer to Wilson (1968), Thorvaldsen (2010) and Wanner
(2010).
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Theorem 5.8 (Theorem 1 of the Principia, Engl. transl. 1729). “The areas,
which revolving bodies describe by radii drawn to an immoveable centre of
force, do lie in the same immoveable planes, and are proportional to the times
in which they are described.”

Proof. We imagine a celestial body moving on an orbit ABCDE . . . under the
influence of a force f acting from the Sun (see Fig. 5.29). The crucial idea is to
let it advance for a certain time interval ∆t without force from A to B (under
Lex 1 uniformly on a straight line) and to compensate the missing force by
one giant kick with force

f ·∆t (5.51)

at the point B. Without this kick, the body would continue during the second
time step ∆t in uniform motion to the point c. The two triangles ABS and
BcS, having the same base and the same altitude, have the same area by
Eucl. I.41. Now the kick at B is in direction of the Sun, hence the velocity
vector AB is transformed into a velocity AV such that BV S are aligned (by
Lex 2). As a consequence, the movement for the second time interval leads
from B to C in such a way that cC is parallel to BS. We conclude, again by
Eucl. I.41, that the triangles BcS and BCS also have the same area.

Continuing in the same way, we find that all triangles ABS, BCS, CDS,
etc., which correspond to equal time steps ∆t, have equal areas. Thus Kepler’s
second law is proved, at least for discrete force impulses. For the case that
we “now let the numbers of those triangles be augmented, and their breadth
diminished in infinitum”, Newton had prepared a “cor. 4. lem. 3.” to conclude
that the law will also be true in the case of a force acting “continually”.12

This “Theorema 1” of the Principia did away with the first 40 chapters of
Kepler’s Astronomia Nova and its proof, more than 300 years later, has lost
none of its beauty and elegance.

The discovery of the law of gravitation from Kepler 1 & 2

“And it is the glory of Geometry that from those few principles,
fetched from without, it is able to produce so many things.”
(I. Newton, from the Preface of the Principia, Engl. transl. 1729)

“... one of the most dramatic moments of the real beginnings was
when Newton suddenly understood so much from so little ...”

(R. Feynman, lecture of March 13, 1964)

Theorem 5.9 (Prop. 11 of Newton’s Principia). A body P , orbiting according
to Kepler 1 and 2,13 moves under the effect of a centripetal force, directed to
the centre S, satisfying the law

12Today we would interpret the above procedure as a numerical method for differ-
ential equations (more precisely, the symplectic Euler method, cf. e.g. Hairer, Lubich
and Wanner, 2006, p. 3), and rely on convergence results for such methods. The
same argumentation applies to all subsequent proofs of this chapter.

13Not the original wording; Newton did not mention Kepler in the Principia.
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f =
Const

r2
, where r is the distance SP. (5.52)

For the proof, we first establish a relation between the physical force and a
geometrical quantity. For this we look at Newton’s drawing in his manuscript
from 1684 reproduced in Fig. 5.30, left: We imagine a body moving with initial
velocity in direction AB attracted by a centre of force situated far away in
direction AC. This force will deviate the body during a certain time interval
∆t to a curved orbit AD. If there were no initial velocity, the body would
move to C, so that ACDB would be a parallelogram. But the distance AC,
for a fixed time interval ∆t, is proportional to the force (Lex 2). We conclude
that

the acting force is proportional to the distance BD
between the point on the tangent and the point on the orbit.

(5.53)

For this distance, denoted by RQ in the sequel, Newton discovered a nice
property:

Fig. 5.30. Reproductions from Newton’s autograph (1684), manuscript Cambridge
Univ. Lib. Add. 39656; the force acting on a moving body (left); picture for New-
ton’s lemma (right). Reproduced by kind permission of the Syndics of Cambridge
University Library

Newton’s lemma. Let APQ be an ellipse with focus S and suppose P to be
the position of the planet moving towards Q, while the point R moves on the
tangent with S,Q,R collinear. Let T be the orthogonal projection of Q onto
PS (see Fig. 5.30, right). Then, if the distance PQ tends to zero, we have

RQ ≈ Const ·QT 2 , (5.54)

where the constant is independent of the position of P on the ellipse.

Proof. The proof is displayed in Fig. 5.31. We begin by collecting what we
know from Apollonius (see Chap. 3): we know that the tangent PR is parallel
to the diameter DCK, conjugate to GCP (Apoll. II.6). We denote the lengths
of these diameters by 2d and 2c respectively. Through H, the other focus, and
Q we draw parallels to DK which yield the points I and X on SP and V on
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CP .14 We further know that the normal PF of length h is the angle bisector
of SPH (Apoll. III.48), i.e. the triangle IPH is isosceles, hence IP = PH
(Eucl. I.6). We next have SE = EI by Thales since SC = CH (Apoll. III.45).
Therefore, since SE+EI + IP +PH = 2a (Apoll. III.52), we obtain our first
interesting result,

EP = EI + IP = a . (5.55)

The key idea of the proof is now the following one: if our ellipse were a circle,
we would know by Eucl. III.35 (or Eucl. II.14) that GV · V P = QV 2. But in
the case of the ellipse, we have to divide these values by the lengths of the
corresponding conjugate diameters and obtain

GV · V P

c2
=

QV 2

d2
i.e. (3) : V P =

c2

GV
· QV 2

d2
.

To complete the proof, we have to express V P in terms of RQ and QV in
terms of QT . Note that the triangle XV P is similar to ECP and QTX is
similar to PFE (orthogonal angles), whence by (5.55)

(2) : XP = V P · a
c
, (6) : QX = QT · a

h
.

In order to make more progress, we now leave the path of exemplary Greek
rigour and suppose PQ very (infinitely) small, i.e. we identify

(1) : RQ ≈ XP , (4) : GV ≈ GP = 2c , (5) : QV ≈ QX .

A simple calculation now gives by using, in this order, (1), (2), (3), (4), (5),
(6),
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Fig. 5.31. Newton’s proof of his lemma

14All upper case letters of this proof are the original ones of Newton, but not the
lower case letters a, b, c, d and h, which we use to simplify the formulas.
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RQ ≈ a3

2h2d2
·QT 2 .

From Apoll. VII.31 (Exercise 2 on page 73) we finally have hd = ab (14 area
of the circumscribed parallelogram), which turns the above formula into

RQ ≈ a

2b2
·QT 2 (5.56)

where, as stated, the constant15 is independent of the position of P .

Proof of Theorem 5.9. The main theorem is finally obtained by combining the
above three results:

(a) The force f is proportional to RQ (equation (5.53));

(b)RQ is proportional to QT 2 (Newton’s lemma (5.54));

(c) QT is inversely proportional to SP , because QT ·SP
2

(the area of the triangle
SPQ) is constant (∆t fixed, Kepler 2);

hence f is inversely proportional to SP 2.

R.Feynman and the reciprocal problem

“Pour voir présentement que cette courbe ABC . . . est toûjours
une Section Conique, ainsi que Mr.Newton l’a supposé, pag. 55.
Coroll. I. sans le démontrer; il y faut bien plus d’adresse. [To
see now that this curve ABC . . . is always a conic section, as
Mr.Newton has assumed without proof on p. 55, Coroll. I, requires
considerably more ability.]” (Joh. Bernoulli, 1710)

“... no calculus required, no differential equations, no conservation
laws, no dynamics, no angular momentum, no constants of inte-
gration. This is Feynman at his best: reducing something seem-
ingly big, complicated, and difficult to something small, simple,
and easy.” (B.Beckman, 2006)

The reciprocal result, that a body orbiting under the influence of a central
force obeying the inverse-square law always follows an elliptic, parabolic or
hyperbolic arc, was much harder to prove. Joh.Bernoulli, who gave a proof for
the problem in 1710 using differential calculus, stated proudly that answering
this question “requires considerably more ability” (see the quotation). A ge-
ometric explanation, as elegant as the proofs above, had to wait for another
three centuries and was presented by R. Feynman in his lecture of March 13,
1964 at Caltech (see Feynman, Goodstein and Goodstein 1996, also Beckman
2006).16

15Newton remarked that this constant is the reciprocal of the latus rectum.
16The authors are grateful to Christian Aebi and Bernard Gisin, Geneva, for

valuable references to the literature.
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Fig. 5.32. Feynman’s variant with equal angles instead of equal time steps

Equal angles instead of equal time steps. We suppose that we have
a force acting according to the inverse-square law. As we observed in (5.51)
and (5.52), the force impulses, for constant time steps, decrease like 1

r2 with
increasing r. We now choose equal angles at the Sun. By Eucl. VI.19, the areas
of the triangles SPiPi+1 are proportional to r2. Therefore, by Kepler 2, the
time steps ∆t (which multiply the force) are proportional to r2 as well and

the force impulses will all have the same length.
Moreover, their directions form a regular star.

(5.57)

The situation is summarised in Fig. 5.32.

The hodograph. We now draw the velocities as points in a space with origin
O (see Fig. 5.33, left). The velocity Ṗ0 at the perihelion P0 is fastest and
directed upwards. Then the impulses f push the velocities Ṗ1, Ṗ2, . . . first to
the left, then downwards, until at the aphelion (here P9) the velocity is slowest
and directed exactly downwards. All impulses f have, by (5.57), constant
length and their directions increase regularly by the same amount ∆ϕ. We
therefore get a regular n-gon and, for ∆ϕ → 0, we obtain the surprising result:

The velocity Ṗ of a planet orbiting under the effect of
a central force inversely proportional to r2 describes a circle.

(5.58)

The centre C of the circle is not at the origin O, except for circular motion
with constant speed. If the origin O were on or outside the circle, we would
have parabolic or hyperbolic motion.

It is interesting that such an elegant result escaped the attention of Eu-
ler, Lagrange and Laplace. Only in the work of Hamilton did the velocities
(momenta) acquire the same importance as the positions.

Conclusion. Now comes the most difficult step (Feynman: “I took a long
time to find that”). We have to find a connection between the orbit in Fig. 5.32
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Ṗ1

∆ϕ

f

Ṗ2
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Ṗ5

f
Ṗ6
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Ṗ12

f
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Fig. 5.33. The hodograph of Kepler motion, producing a circle (left); synthesis of
the two pictures (right)

and the hodograph in Fig. 5.33. After some time for thought, we draw in the
second picture the curve of points P having the same distance from O as
from the circle and obtain Fig. 5.33 (right). We know from Chap. 3 (see in
particular Fig. 12.8 (b)) that this curve is an ellipse with O and C as foci. We

denote by ePi the points of this ellipse situated on the rays CṖi. These points
are located under the same angles with respect to C as are the corresponding
points Pi with respect to S in Figure 5.32.

We next consider Fig. 3.4 (right): the tangent at P is orthogonal to FB (in
the notation of that figure). Applied to Fig. 5.33, this means that the tangent

at ePi to the ellipse is orthogonal to OṖi. On the other hand, the tangent at
Pi to the orbit in Fig. 5.32 (left) is parallel to OṖi. We conclude that the two
ovals are identical, just rotated by 90◦ and, perhaps, scaled differently. Since
we know that the “oval” in Fig. 5.33 is an ellipse, with C as focus, we have
that the orbit in Fig. 5.32 is also an ellipse with S as focus.

This was “Feynman at his unique best” (see the quotation); later D.L. and
J.R.Goodstein discovered that precisely the same proof had been published
in 1877 by another great physicist, James Clerk Maxwell.

“It is not easy to use the geometric method to discover things,
it is very difficult, but the elegance of the demonstrations after
the discoveries are made, is really very great. The power of the
analytic method is that it is much easier to discover and to prove
things, but not in any degree of elegance. There is a lot of dirty
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paper with x-es and y-s and crossed out cancellations and so on ...
(laughter).”

(R.Feynman, lecture of March 13, 1964, 35th minute)

This “dirty paper with x-es and y-s” leads us to the next chapters ...

5.11 Exercises

1. Prove, for the circular quadrilateral with sides a, b, c, d of Ptolemy’s
Lemma 5.1 and Fig. 5.4, the formulas

δ1 : δ2 = (ab+ cd) : (ad+ bc) , δ21 = (ac+ bd)(ab+ cd) : (ad+ bc) (5.59)

which can be found in Förstemann (1835).

2. Multiply the values of cosα for α = 0, π6 ,
2π
6 , 3π6 , 4π

6 , 5π6 , 6π6 by 6 and design
a simple rule for French fisherman to find the tidal height as the sea level
falls, hour per hour, during approximately 6 hours from high water to low
water.

3. (Exercise suggested by P.Henry (2009)) Reconstruct Viète’s proof of the
addition formulas (5.6)—which in Viète were not “formulas”, but half a
page of Latin text—by supposing BC = sinα, AC = cosα, BD = sin β,
AD = cosβ to be known (see Fig. 5.34) and by computing, using Thales,
Pythagoras and Eucl. III.20, BE = sin(α + β) and AE = cos(α + β).
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Fig. 5.34. Proof of Viète; right: illustration from van Schooten’s edition 1646

4. Verify the values of sine, cosine and tangent given in Table 5.2.

5. Consider an arbitrary triangle with sides a, b, c. Prove the following beau-
tiful expressions for the half-angles:

sin
α

2
=

r
(s − c)(s − b)

bc
, cos

α

2
=

r
(s− a)s

bc
,

tan
α

2
=

s
(s− c)(s− b)

(s − a)s
, where s =

a+ b+ c

2

(5.60)


